The Mathematics of Big Data

Joerg Fliege Professor for Operational Research Head of Operational Research Group Department of Mathematical Sciences University of Southampton

Irot

Big data

Big challenges

Big data

Mathematics

Big challenges

Big data

With big data...

comes big challenges...

...and you need good mathematics

Big data: challenges

- Central processing infeasible
- Central storage infeasible
- Streaming data: real-time learning
- Streaming: no revisiting of past entries
- Need to revisit old tools from signal processing and statistical learning

Big data: challenges, tasks, and optimization

Massive Parallel, Decentralized Scale Outliers, Time/Data Missing Adaptive Values Signal Processing Models and Challenges and Learning Optimization for Big Data **Real-Time** Robust Constraints Succinct, Cloud Prediction, Dimensionality Sparse Storage Reduction Forecasting Regression, Cleansing, Tasks Classification, Imputation Clustering

Southampton

$Y \in \mathbb{R}^{N \times T}$

$Y \in \mathbb{R}^{N \times T}$

with N or T huuuuuuuuuuuuuuue.

$Y \in \mathbb{R}^{N \times T}$

with N or T huuuuuuuuuuuuuuue.

(Ex.: traffic data, *N* traffic links, *T* time slots.)

We want to decompose *Y* into

"background data" / trend $L \in \mathbb{R}^{N \times T}$

with *L* low rank matrix

Example Southampton $Y \in \mathbb{R}^{N \times T}$

- We want to decompose *Y* into
- "background data" / trend $L \in \mathbb{R}^{N \times T}$
- with *L* low rank matrix
- "patterns/clusters/outliers" $S \in \mathbb{R}^{M \times T}$
- with S sparse

Example Southampton $Y \in \mathbb{R}^{N \times T}$

- We want to decompose *Y* into
- "background data" / trend $L \in \mathbb{R}^{N \times T}$
- with *L* low rank matrix
- "patterns/clusters/outliers" $S \in \mathbb{R}^{M \times T}$
- with S sparse

& modelling/measurement errors $V \in \mathbb{R}^{N \times T}$

Solve

$Y \approx L + DS + V$

with some "dictionary matrix" D.

But not all entries of *Y* are important, so use a projection operator and solve

$$\mathcal{P}(Y) \approx \mathcal{P}(L + DS + V)$$

But how do we model *L* low rank and *S* sparse?

Write the task as an optimisation problem:

$$\min_{L,S} \|\mathcal{P}(Y - L - DS)\|_F + \lambda \|L\|_* + \omega \|S\|_0$$

Weight λ controls rank penalty.

Weight ω controls sparsity penalty.

Consider

$\min_{L,S} \|\mathcal{P}(Y - L - DS)\|_F + \lambda \|L\|_* + \omega \|S\|_0$

Weight λ controls rank penalty.

Weight ω controls sparsity penalty.

One rich, versatile model that explains data parsimoniously and succinctly.

$$\min_{L,S} \|\mathcal{P}(Y - L - DS)\|_F + \lambda \|L\|_* + \omega \|S\|_0$$

This approach subsumes

- Principle component analysis, robust PCA
- Dictionary learning
- Compressed sampling, compressed sensing
- Subspace clustering
- Nonnegative matrix factorization
- Missing value imputation
- Regression
- Kernel-based learning
- Dimensionality reduction

$$\min_{L,S} \|\mathcal{P}(Y - L - DS)\|_F + \lambda \|L\|_* + \omega \|S\|_0$$

This approach subsumes

- Principle component analysis, robust PCA
- Dictionary learning
- Compressed sampling, compressed sensing
- Subspace clustering
- Nonnegative matrix factorization
- Missing value imputation
- Regression
- Kernel-based learning
- Dimensionality reduction

One mathematical model to rule them all a lot of other approaches

$\begin{array}{l} \textbf{Algorithms} & \textbf{Southampton} \\ \min_{L,S} \|\mathcal{P}(Y - L - DS)\|_F + \lambda \|L\|_* + \omega \|S\|_0 \end{array}$

- ADMM: alternating direction method of multipliers
- DR: Douglas-Rachford algorithm
- BCDM: block-coordinate descent methods
- K-SVD
- Mardani-Mateos-Giannakis
- Iterative subgradient

Algorithms $\min_{L,S} \|\mathcal{P}(Y - L - DS)\|_F + \lambda \|L\|_* + \omega \|S\|_0$

- ADMM: alternating direction method of multipliers
- DR: Douglas-Rachford algorithm
- BCDM: block-coordinate descent methods
- K-SVD
- Mardani-Mateos-Giannakis
- Iterative subgradient

Decentralized

Parallelizable

Robust

Online

Scalable

Convergence guarantee: we know they always work!

Applications

(b)

Southampton

Dynamic network visualization

(a)

21

Conclusions

Southampton

Mathematics: we are here to help.